119 research outputs found

    Shared control of an aerial cooperative transportation system with a cable-suspended payload

    Get PDF
    This paper presents a novel bilateral shared framework for a cooperative aerial transportation and manipulation system composed by a team of micro aerial vehicles with a cable-suspended payload. The human operator is in charge of steering the payload and he/she can also change online the desired shape of the formation of robots. At the same time, an obstacle avoidance algorithm is in charge of avoiding collisions with the static environment. The signals from the user and from the obstacle avoidance are blended together in the trajectory generation module, by means of a tracking controller and a filter called dynamic input boundary (DIB). The DIB filters out the directions of motions that would bring the system too close to singularities, according to a suitable metric. The loop with the user is finally closed with a force feedback that is informative of the mismatch between the operator’s commands and the trajectory of the payload. This feedback intuitively increases the user’s awareness of obstacles or configurations of the system that are close to singularities. The proposed framework is validated by means of realistic hardware-in-the-loop simulations with a person operating the system via a force-feedback haptic interface

    Mutual localization using anonymous bearing measurements

    Get PDF
    This paper addresses the problem of mutual localization in multi-robot systems in presence of anonymous (i.e., without the identity information) bearing-only measurements. The solution of this problem is relevant for the design and implementation of any decentralized multi-robot algorithm/control. A novel algorithm for probabilistic multiple registration of these measurements is presented, where no global localization, distances, or identity are used. With respect to more conventional solutions that could be conceived on the basis of the current literature, our method is theoretically suitable for tasks requiring frequent, many-to-many encounters among agents (e.g., formation control, cooperative exploration, multiple-view environment sensing). An extensive experimental study validates our method and compares it with the full-informative case of bearing-plus-distance measurements. The results show that the proposed localization system exhibits an accuracy commensurate to our previous method [1] which uses bearing-plus-distance information

    Object Recognition in Swarm Systems: Preliminary Results

    No full text
    Object recognition is a fundamental topic for the development of robotic systems able to interact with the environment. Most existing methods are based on vision systems and assume a broad point of view over the objects, which are observed in their entirety. This assumption is sometimes difficult to fulfill in practice, and in particular in swarm systems, constituted by a multitude of small robots with limited sensing and computational capabilities. We have developed a method for object recognition with a heterogeneous swarm of low-informative spatially-distributed sensors employing a distributed version of the naive Bayes classifier. Simulation results show the effectiveness of this approach highlighting some nice properties of the developed algorithm

    A fully actuated quadrotor UAV with a propeller tilting mechanism: Modeling and control

    No full text
    Equipped with four actuators, quadrotor Unmanned Aerial Vehicles belong to the family of underactuated systems. The lateral motion of such platforms is strongly coupled with their orientation and consequently it is not possible to track an arbitrary 6D trajectory in space. In this paper, we propose a novel quadrotor design in which the tilt angles of the propellers with respect to the quadrotor body are being simultaneously controlled with two additional actuators by employing the parallelogram principle. Since the velocity of the controlled tilt angles of the propellers does not appear directly in the derived dynamic model, the system cannot be static feedback linearized. Nevertheless, the system is linearizable at a higher differential order, leading to a dynamic feedback linearization controller. Simulations confirm the theoretical findings, highlighting the improved motion capabilities with respect to standard quadrotors

    Design and implementation of a novel architecture for physical human-UAV interaction

    No full text
    Interaction between humans and unmanned aerial vehicles is a promising field for future applications. However, current interfacing paradigms either imply the presence of intermediary hardware as monitors, joysticks and haptic devices, or are limited to visual/auditory channels with hand gestures, voice recognition, or interpretation of face poses and body postures. Another paradigm, physical human–robot interaction, which is based on mutual exchange of forces, is popular when dealing with robotic arms and humanoids, while unmanned aerial vehicles are usually considered too dangerous and lack proper interaction surfaces to exchange forces. In this paper, we address the problem of physical human–unmanned aerial vehicle interaction and we propose a straightforward approach to allow a human to intuitively command an unmanned aerial vehicle through exchanges of forces. Using a residual based estimator, we estimate the external forces and torques acting on the unmanned aerial vehicle. Through the employment of a sensor ring, we are able to separate the human interaction forces from additional disturbances as wind and parameter uncertainties. This knowledge is used inside a control framework where the human is allowed to change the desired trajectory by simply applying forces on the unmanned aerial vehicle. The system is validated with multiple hardware-in-the-loop simulations and experiments in which we try different interaction modalities

    Autonomous Vegetation Identification for Outdoor Aerial Navigation

    No full text
    Identification of landmarks for outdoor navigation is often performed using computationally expensive computer vision methods or via heavy and expensive multi-spectral and range sensors. Both choices are forbidden on Micro Aerial Vehicles (MAV) due to limited payload and computational power. However, an appropriate choice of the hardware sensor equipment allows the employment of mixed multi-spectral analysis and computer vision techniques to identify natural landmarks. In this work, we propose a low-cost low-weight camera array with appropriate optical filters to be exploited both as stereo camera and multi-spectral sensor. Through stereo vision and the Normalized Difference Vegetation Index (NDVI), we are able to classify the observed materials in the scene among several different classes, identify vegetation and water bodies and provide measurements of their relative bearing and distance from the robot. A handheld prototype of this camera array is tested in outdoor environment

    Obstacle Detection, Tracking and Avoidance for a Teleoperated UAV

    No full text
    In this paper, we present a collision-free indoor navigation algorithm for teleoperated multirotor Unmanned Aerial Vehicles (UAVs). Assuming an obstacle rich environment, the algorithm keeps track of detected obstacles in the local surroundings of the robot. The detection part of the algorithm is based on measurements from an RGB-D camera and a Bin-Occupancy filter capable of tracking an unspecified number of targets. We use the estimate of the robot’s velocity to update the obstacles state when they leave the direct field of view of the sensor. The avoidance part of the algorithm is based on the Model Predictive Control approach. By predicting the possible future obstacles states, it filters the operator commands to prevent collisions. The method is validated on a platform equipped with its own computational unit, which makes it selfsufficient in terms of external CPUs

    Distributed Target Identification in Robotic Swarms

    No full text
    The ability to identify the target of a common action is fundamental for the development of a multi-robot team able to interact with the environment. In most existing systems, the identification is carried on individually, based on either color coding, shape identification or complex vision systems. Those methods usually assume a broad point of view over the objects, which are observed in their entirety. This assumption is sometimes difficult to fulfil in practice, and in particular in swarm systems, constituted by a multitude of small robots with limited sensing and computational capabilities. In this paper, we propose a method for target identification with a heterogeneous swarm of low-informative spatially-distributed sensors employing a distributed version of the naive Bayes classifier. Despite limited individual sensing capabilities, the recursive application of the Bayes law allows the identification if the robots cooperate sharing the information that they are able to gather from their limited points of view. Simulation results show the effectiveness of this approach highlighting some properties of the developed algorithm

    Cooperative transportation of a payload using quadrotors: A reconfigurable cable-driven parallel robot

    No full text
    This paper addresses the problem of cooperative aerial transportation of an object using a team of quadrotors. The approach presented to solve this problem accounts for the full dynamics of the system and it is inspired by the literature on reconfigurable cable-driven parallel robots (RCDPR). Using the modelling convention of RCDPR it is derived a direct relation between the motion of the quadrotors and the motion of the payload. This relation makes explicit the available internal motion of the system, which can be used to automatically achieve additional tasks. The proposed method does not require to specify a priory the forces in the cables and uses a tension distribution algorithm to optimally distribute them among the robots. The presented framework is also suitable for online teleoperation. Physical simulations with a human-in-the-loop validate the proposed approach
    • …
    corecore